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Abstract

Optimal power flow (OPF) with close cooperation between the power grid and flexi-

ble electricity-intensive chemical processes can reduce costs for the grid and for elec-

tricity users. However, this would require sharing detailed chemical process models,

which may reveal confidential information and potentially jeopardize competitive

advantages for a chemical process operator. We propose an algorithm that enables

economically advantageous cooperation without the need to exchange sensitive

information. Low-order linear models are used to represent the dynamic behavior of

electricity-intensive processes. We integrate these models into the OPF problem

and solve the problem using a decoupling strategy based on Benders-type cuts. The

cuts introduce limited communication between the chemical processes and the grid

without exchanging explicit information pertaining to the process dynamics and

performance. Our results reproduce solutions obtained by sharing detailed process

models up to a user-defined optimality gap for several test cases that reflect both

normal and congested grid states. We also investigate the trade-off between the

value of the optimality gap and computational effort. Finally, we study the scaling

behavior of the iterative procedure with respect to flexible loads at multiple grid

locations.
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1 | INTRODUCTION

Solar and wind power plants are becoming major producers of elec-

tricity worldwide. Also, electricity-intensive industries have become

hybrid consumers and suppliers of their on-site generation capacities.

Renewable energy sources bring formerly unknown challenges for the

operation of electricity grids. Originating from natural sources of

energy, the power production of solar and wind energy plants is diffi-

cult to predict and highly variable over short time scales. Aiming for

stable and safe grid operation, two branches of research have

emerged recently: smart grid technology focuses on optimal load dis-

tribution in networks over time and space,1,2 whereas demand side

management (DSM) is an effort to monetize the operational flexibility

of loads to shape demand curves.3,4,5

Both fields have received considerable research attention in the

past years.6,7 As a result, different pricing schemes such as peak

pricing, other forms of time-of-use contracts, day-ahead pricing, or

base-load contracts are offered to large localized energy consumers.
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Nevertheless, when grid operators act and decide separately from

users, they cannot utilize the full potential of DSM in electrical power

grids. In a recent article, Otashu et al. have examined the effect of

cooperative optimal power flow (OPF) calculations, in which grid

operators are granted unrestricted access to the full operational flexi-

bility of large industrial energy consumers to optimize the electrical

energy transmission.8 We will refer to this problem as integrated for-

mulation of cooperative OPF problems. This results in cost improve-

ments similar to conventional demand response (DR) for both grid

transmission and process operation in normal grid conditions. In con-

gested grids, cooperative OPF can reduce grid transmission cost and

electricity prices more effectively than conventional DR, and can

prevent load shedding. This makes the cooperative optimization

approach superior, in particular in congested conditions, for example,

after a critical failure of a transmission line or a generator. However,

the cooperative approach with the integrated formulation hinges on

process operators sharing confidential information via detailed pro-

cess models. Hence, industry would likely be reluctant to support such

concepts. A more acceptable solution would be to allow grid opera-

tors to control some of the degrees of freedom in the chemical plant

without sharing detailed models with confidential information. Moti-

vated by the above, the key contributions of this article are:

• A decoupling strategy tailored to ensure confidentiality in coopera-

tive OPF problems while staying close to the integrated solution.

• A case study of the decomposition approach, where we benchmark

its results against the integrated solution.

2 | MOTIVATION FOR DECOUPLING
COOPERATIVE OPF PROBLEMS

2.1 | Conventional OPF with DR and their
limitations

An important part of managing the power grid involves balancing power

generation and demand across the power network in real time. Power

supply from various generating sources and storage devices is constantly

being modulated to match the variable power demand and, in recent

times, to also balance fluctuations arising from renewable power genera-

tion units. Power generation target levels can be computed by solving

the conventional OPF problem of the general form (1).9,10,11

min
Pgen,T,θ

X
i � ΩBus

XH
t¼1

Fi Pgeni,t

� �
ð1aÞ

s.t.

Pgeni,t �Ploadi,t ¼
X
j � Ωi

l

T i,jð Þ,t, 8i�ΩBus ð1bÞ

T i,jð Þ,t ¼ β �Si,j θj,t�θi,t
� �

, 8 i, jð Þ�Ωl ð1cÞ

Tmin
i,jð Þ ≤ T i,jð Þ,t ≤ T

max
i,jð Þ , 8 i, jð Þ�Ωl ð1dÞ

θmin
i ≤ θi,t ≤ θ

max
i , 8i�ΩBus ∖ slackbusf g ð1eÞ

θslackbus,t ¼0 ð1fÞ

Pgen,min ≤Pgen
t ≤Pgen,max ð1gÞ

Pgen
t �Pgen

t�1 ≤P
gen,rampup �Δt ð1hÞ

Pgen
t �Pgen

t�1 ≥ �Pgen,rampdown �Δt ð1iÞ

where all constraints (1b)–(1i) have to hold for the entire time horizon

under consideration, that is, 8t� 1,…,Hf g. Here, we will assume a

15-min-interval discretization of 1 day, so H¼96. We use i as index

over the set of buses ΩBus. Ωi
l is the set of buses connected to bus

i via a transmission line, Ωl is the set of transmission lines, and

t denotes a time slot of duration Δt. The decision variables are the

generator target levels of all generators in the grid, Pgen
t �ℝH�jΩBus j;

the power flow between connected pairs of buses i and j, T�ℝH�jΩl j;

and the bus angles w.r.t. the slack bus in radians, θ�ℝH�jΩBus j. The Fi �ð Þ
are operating cost functions of the generators, whose sum is mini-

mized with the objective (1a). Each Ploadi,t is the power demand on a

bus denoted with i in time slot t. S is the circuit susceptance matrix with

entries Si,j in pu (per unit on a base β¼100 MW). The marginal values

of the nodal power balances (1b) provide the nodal electricity prices.

Problem (1) is a linear program (when using linear generator cost

functions). Its solution is the direct-current (DC) OPF that approxi-

mates the more complex alternating current (AC) power flow prob-

lem.10 In transmission systems that have a diverse set of voltage

magnitudes or where (1e) cannot be fulfilled, the AC formulation is

required to get accurate solutions.11

In the OPF problem (1), the power demand at each bus, Ploadi,t , is a

fixed load level metered in real-time from power consumption sites or

estimated using historical power demand. When industrial electricity

users participate in DR programs, they exploit the electricity price pro-

files that are computed assuming that the values for Ploadi,t are known

and will not change over the time horizon considered. However, in

response to the electricity price profiles, industrial participants may

schedule their power demand in a way that differs from the values

assumed for Ploadi,t in problem (1). This violates the assumption that

lead to the electricity price profiles. Consequently, DR activities can

create undesired effects on electricity grids such as rebound peaks12

or even additional transmission congestion.13 As visualized in

Figure 1, any sequence of solving OPF problems and DRs separately

leads to a mismatch between real industrial demand and demand

assumed by the OPF problem. An iterative approach to finding a mar-

ket equilibrium for price profiles and demand profiles is not

guaranteed to converge and requires heuristic stopping criteria,14 or

hard-to-derive demand-price sensitivity matrices.15

The cooperative OPF problem, developed in our previous work,8

avoids sequencing by integrating the conventional OPF problem and

the scheduling of industrial demand into a monolithic optimization

problem in the integrated formulation. The demand of cooperating

electricity users becomes a decision variable of the monolithic
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problem and can thus be incorporated both in the grid description as

load and in the process model describing end-user behavior. As a con-

sequence, the cooperative OPF problem eliminates the mismatch

between modeled and implemented process demand. Our previous

results show8 that the cooperative and the sequential approach are

economically comparable in normal grid conditions. However, the

cooperative approach can be superior to the sequential approach in

congested grids because it can avoid load shedding and reduce con-

gestion. This can improve the economics of the grid and the resulting

electricity prices tremendously.8 Note that transmission constraints

such as (1d) are active per definition in congested grids. Our previous

results8 support the interpretation that the mismatch between

assumed and implemented process demand visualized in Figure 1 that

is present in the sequential approach is a drawback with significant

economical impact in congested grids.

2.2 | Cooperative OPF and its limitations

Our previous work8 introduced the cooperative OPF approach. To

make this article more self-contained, we highlight the differences

between cooperative OPF problems and conventional OPF problems

in this section. We also state limitations of the previously proposed

integrated cooperative OPF formulation, one of which will motivate

this article. For more details on the cooperative OPF approach, we

refer the reader to our previous work.8

We represent the power consumption levels of demand respon-

sive end-users with simple dynamic models where end-user demand

is modeled as an optimization variable. Then, we formulate the inte-

grated problem: an optimization problem comprising all grid-related

decisions and constraints, including the dynamic models of all

cooperating plants. By integrating the two components of the cooper-

ative OPF approach, we recognize that we renounce the end-user's

ability to minimize their own electricity cost. In this formulation, we

can allocate the flexible demand of cooperating end-users toward

minimizing generation and transmission cost directly, together with

other grid-related decisions. In contrast, flexible user demand only

reacts to a price profile in conventional OPF formulations. As shown

in our previous work,8 cooperative OPF solutions can be superior to

conventional OPF solutions that are applied in conjunction with (inde-

pendent, user-level) “downstream” DR activities.

In its current state of development, the cooperative OPF approach

exhibits two major limitations. First, the operational flexibility of

cooperating end-users is used to minimize the overall generation and

transmission cost of the grid. While this is desirable from a grid perspec-

tive, there is no guarantee that the cost reductions achieved through the

cooperation of end-users and grid influence the locational marginal prices

of the buses on which the cooperating end-users are connected to the

grid. In particular, it is possible that some demand-responsive end-users

would have lower electricity costs (based on locational marginal prices) if

they denied the cooperation in order to exploit the locational marginal

prices on their bus for their own benefit only. Despite the lack of

guaranteed cost reduction through cooperation, several cases studied in

our previous work8 led to lower electricity cost for the end-users than

they would have had without cooperation. Also, we assume that the

cooperating industrial process only focuses on reducing electricity cost.

One could think of other relevant types of operating cost, for example,

cooling or heating cost. With our current framework, reducing these

costs may not be addressed properly. In order to align all end-users' mon-

etary interests with the goal of globally minimizing generation and trans-

mission cost and also considering more general process costs, some

cooperation-compensation mechanism is needed that guarantees

cooperating end-users lower operating costs than they could achieve

through local exploitation of electricity prices. However, such a compen-

sation mechanism is out of the scope of this article.

The second limitation of cooperative OPF problems will be

addressed in this article. In order to formulate the integrated cooperative

OPF problem, demand-responsive end-users have to provide models

describing the dynamic behavior of the process and all constraints

related to safety, quality, and product demand to the grid operators. This

requirement poses a major confidentiality problem for operators of

chemical plants, which we aim to mitigate with this article.

2.3 | Decoupling cooperative OPF and limiting
information exchange

A cooperation between grid and demand-responsive end-user should

find a demand profile that contributes to minimal generation and

transmission cost for the grid but also allows feasible operation of the

cooperating industrial process. In this article, we show that we can

achieve this goal without explicitly sharing a detailed process model.

In particular, our purpose is to avoid sharing explicitly a set of opera-

tionally relevant variables, such as product demand, quality con-

straints, process capacities, storage capacities, and safety constraints.

Of course, these variables influence which demand profiles are feasi-

ble and which are not. However, the grid operators are not interested

Demand
assumption

Conventional
OPF problem

Locational
marginal prices

DR scheduling
Actual
demand

Input

Output

Input

Output

Mismatch

F IGURE 1 Conventional optimal power flow (OPF) problems
assume an industrial demand based on historical data. The OPF
solution provides electricity prices which can be exploited by
demand-responsive end-users. The cost-optimal demand profile for
the end-user is heavily influenced by the locational marginal prices
and will likely not match the original assumption made to formulate
the OPF problem. This mismatch can lead to undesired effects such as
rebound peaks or an induced grid congestion
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in the underlying reasons for feasibility of demand profiles. Therefore,

it is possible to project all process variables onto the space of power

demand profiles, which can then be shared with the grid.

In light of the above, we provide an outer approximation of the

feasible region of power profiles to the grid that can be incorporated

in the OPF problem to shape the power demand of cooperating loads

to minimize generation and transmission costs. To ensure the feasibil-

ity of the power demand profile, we iteratively refine this outer

approximation. We demonstrate that the refining process converges

to an optimal solution of the integrated problem, leading to an optimal

cooperative OPF solution without sharing explicit process details.

While some literature sources claim that the space of power profiles

already reveals substantial proprietary information when

published,16,17 our experience indicates that it is nearly impossible to

reconstruct accurate production characteristics in multiproduct plants

only from power profiles.

3 | LITERATURE REVIEW

Protecting confidential information is an important topic in many con-

texts, which leads to a variety of techniques. For power networks,

Anderson et al. showed that publication of aggregated data sets main-

tains confidentiality for utility companies.18 This would only allow

cooperation of large conglomerations of processes located on the

same bus, which is too restrictive for our purposes. Another concept

to obfuscate information is differential privacy19 with noise added to

queries. The added noise poses a major theoretical challenge to guar-

antee convergence of any solution method to an optimum. Recently,

methods to introduce differential privacy of loads in OPF benchmark

problems were presented in References 16 and 17. The true loads are

obfuscated in a way that minimizes the influence of the added noise

on the OPF solution. However, cooperative OPF computations have

to inherently ensure confidentiality, rather than adding this feature in

a postprocessing stage.

Since DSM allows to reduce electricity cost for energy-intensive

processes and has beneficial effects on grid stability, the field got a lot

of research attention recently. The first and most broadly studied

DSM application process is air seperation.20,21,22 Furthermore, DSM

approaches were developed for steel production,23 combined heat

and power plants,24 metal casting,25 residential HVAC systems,26

electrolysis to produce aluminum27,28,29 and chlorine,30,31 and seawa-

ter desalination,32 to name a few examples. There is also literature

that considers generic processes with a more abstract focus.33,34 For

an overview of the field, we refer to recent review articles.5,3,35 As

mentioned before, the approaches presented assume given electricity

prices, and their DR activities might suffer from the mismatch

between grid assumptions and actually implemented demand depicted

in Figure 1. If this mismatch has a significant impact, our cooperative

approach8 might provide superior performance in congested grids. A

vast amount of literature points out that distributed solution methods

inherently minimize the shared information and explicitly specify the

amount of shared information between the distributed participants.

For example, Allman and Zhang consider energy-intensive processes

that participate not only in DR activities themselves, but also incentiv-

ize downstream processes to shift their demand accordingly.36

Distributed optimization is also used to coordinate DC power net-

works with fixed electric loads and generation plants using natural

gas,37 electric vehicle charging stations and electric vehicle

aggregators,38 different regions in large-scale conventional AC OPF

problems,39 and AC microgrids and battery swapping stations.40

These approaches use Lagrangian-relaxation-based techniques such

as subgradient methods or alternating direction method of multi-

pliers41 because they model the participants under coordination using

mixed-integer models or other formulations that induce a duality gap.

Wenzel and Engell note that such market-like coordination methods

suffer from slow convergence rates and propose alternatives based

on quadratic approximation models.42 However, the dynamic closed-

loop behavior of energy-intensive chemical processes that we con-

sider can be approximated with (low dimensional) linear state-space

models.8,43,44 This then allows the use of Benders decomposition

(BD),45 which relies on models with zero duality gap.

BD was initially introduced to exploit block structure in the con-

straint matrix of mixed integer linear programs (MILPs) and enable

faster solution thereof. We propose to use BD to protect confidential

information embedded in the subproblem models, an idea already dis-

cussed by Li et al.46 It is important to emphasize that such use of BD

is not intended to speed up computations. Rather, the time to com-

pute the solution is likely to increase compared to the integrated

model, but the decoupled formulation allows to find a solution by iter-

atively refining the representation of feasible power profiles. A com-

prehensive review covering both applications and theoretical

developments of BD is provided by Rahmaniani et al.47

4 | SOLUTION STRATEGY: COOPERATIVE
OPF WHILE PROTECTING PROCESS
INFORMATION

BD is suitable to decompose the integrated formulation of coopera-

tive OPF problems: the concepts of master stage and subproblem

stage correspond to the grid component and the process component

of the integrated problem. Based on the communication scheme

between the master stage and the subproblem stage of BD, we

develop an algorithm to compute cooperative OPF solutions while

only communicating information about the power demand profiles of

cooperating processes. To include control over the power profile of

cooperating end-users, we split the Ploadi,t that appear as fixed values in

(1b) into Pload,fixi,t and Pload,coopi,t . While Pload,fixi,t remain fixed values that

represent non-cooperating loads on bus i, Pload,coopi,t are new decision

variables representing the power profile of a cooperating load on bus

i. In the next section, we form process subproblems from state-space

representations of the closed-loop dynamic process behavior. These

subproblems are solved at the cooperating end-user's site. From them,

we can derive conditions that the master variables Pload,coopi,t have to

satisfy for feasible operation of the cooperating process located on
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bus i. Afterward, we describe iteratively adding these conditions to

the master problem.

4.1 | The subproblems

We use linear input–output state-space models in discrete time for

the critical variables relevant to power demand of an industrial chemi-

cal process that is connected to the grid.8 This description of the pro-

cess behavior has the following form:

xtþ1 ¼AxtþB
pt
ut

� �
, 8t� 1,…,H�1f g ð2Þ

where xt �ℝnx and x�ℝnx�H represent the nx state variables relevant

to power demand at one, respectively, all time steps. An example for

such a state is the amount of stored mass of a product or intermedi-

ate. Explicitly sharing terms with xt is undesired, as it reveals confi-

dential information, such as process production capacity and energy

efficiency. p�ℝH represents the power profile, consisting of the

power demand pt at all time steps t. Finally, ut �ℝnu or u�ℝnu�H are

nu other inputs to the system at one, respectively all-time steps which

in contrast to p should not be shared explicitly. A denotes the state

matrix, B denotes the input matrix. They can be regressed from data

either collected from the process, or generated from fundamental

physics-based models of the chemical process. Besides simplicity of the

development, other advantages of such a process description are the

low computational complexity of solving optimization problems with lin-

ear models, and that the behavior of the process is still well predicted.8

We complete the model of the chemical process with linear con-

straints that represent operational requirements such as product

demand, product quality, and safety constraints and physical bounds

on x, p, and u:

Mxt ≥ b, 8t� 1,…,Hf g ð3Þ

xt � xlb,xub
� 	

, 8t� 1,…,Hf g ð4Þ

pt � plb,pub
� 	

, 8t� 1,…,Hf g ð5Þ

ut � ulb,uub
� 	

, 8t� 1,…,Hf g ð6Þ

The model (2)–(6) describes feasible operating schedules of the

chemical process it represents. Thus, we could set the values of p to

values of a solution candidate proposed by the master variables

Pload,coopi,t . Because the master problem only includes an outer approxi-

mation of the projection of (2)–(6) to the space of Pload,coopi,t , a candi-

date solution will likely render the subproblem infeasible. Then, in the

decoupled cooperative OPF approach, we must to generate inequality

constraints formulated in the variables Pload,coopi,t . These “feasibility
cuts” can be derived from an unbounded ray of the dual problem

corresponding to the primal infeasible subproblem.45 However, it is

theoretically possible that the dual problem corresponding to an infeasi-

ble primal problem is also infeasible. In practice, this issue can be

circumvented with a feasible formulation,48 using slacks that penalize

infeasible values of Pload,coopi,t . Therefore, the following subproblem

effectively minimizes the distance between the power profile

suggested by the master solution for the Pload,coopi,t and a feasible

power profile p:

min
x,u,p,sþ ,s�

XH
t¼1

sþt þ s�t ð7aÞ

s.t.

(2)–(6)

sþ,s� ≥0 ð7bÞ

pt ¼Pload,coopi,t þ sþt � s�t , 8t� 1,…,Hf g ð7cÞ

where feasible suggestions Pload,coopi,t can be identified by an optimal

subproblem objective of zero. Each cooperating process is represen-

ted by one subproblem.

The cuts generated by problem (7) have the following form45:

XH
t¼1

λcoupt �Pload,coopi,t ≥ λ> r ð8Þ

where λ denotes the dual variables corresponding to problem (7), λcoupt

are its entries corresponding to the tth equation of the form (7c),

which couples pt and Pload,coopi,t . The vector r gathers the right-hand

sides of problem (7) in standard linear programming (LP) form, that is, all

terms that do not contain any decision variables of (7), except for the

Pload,coopi,t because these values are variables of the master problem.48

4.2 | The master problem

We derive the master problem from problem (1). We retain the objective

and most of the constraints of (1). As already mentioned, we split the Ploadi,t

in (1b) into Pload,fixi,t and Pload,coopi,t . Also, we copy box constraints for

Pload,coopi,t from (5) into the master problem as an initial outer approxi-

mation of the feasible region of power profiles p in (2)–(6). We refine

this outer approximation by adding a BD-type cut of the form (8) in each

iteration of our decoupled solution algorithm. The master problem is:

min
Pgen,T,θ,Pload,coop

X
i � ΩBus

XH
t¼1

Fi Pgeni,t

� �
ð9aÞ

s.t.

Pgeni,t � Pload,fixi,t þPload,coopi,t

� �
¼

X
j � Ωi

l

T i,jð Þ,t, 8i�ΩBus,t� 1,…,Hf g, ð9bÞ

1cð Þ� 1ið Þ, 8t� 1,…,Hf g,

Pload,coopi,t � plb,pub
� 	

, 8i�ΩBus, 8t� 1,…,Hf g, ð9cÞ

BD�Cuts 8ð Þ: ð9dÞ
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4.3 | A decoupled solution strategy

In each iteration, the solution of the master problem provides power

profiles that minimize the power flow cost, given the current outer

approximation of the feasible set of power profiles. Our algorithm ter-

minates if the master problem suggests feasible power profiles for all

cooperating end-users, meaning that power profiles which are both

cost-optimal and feasible were identified. Otherwise, for each infeasi-

ble power profile suggestion, the corresponding subproblem will add a

cut to the master problem. In the next iteration, the previously pro-

posed power profile will be infeasible in the master problem, so a new

suggestion will be found. We sketch the communication scheme

between grid and cooperating process in Figure 2.

An advanced basis start allows to solve the individual linear prob-

lems efficiently. Convergence of the proposed algorithm follows

directly from Reference 45. Consequently, the integrated solution can

be recovered with finitely many iterations.

Equation (8) shows that only dual coefficients corresponding to

coupling equations and the scalar product λ> r are shared with the

grid. These cuts do not allow to reconstruct or “reverse engineer”
entries or dimensions of A, B, M, or b, nor the solution values of

the internal variables x, u or dual variables from λ that do not corre-

spond to (7c).

Any communication between the grid (master problem) and partici-

pating electricity-intensive entities (subproblems) consists of exchanging

information only in the space of power profiles. Besides the cuts, the

master problem is only informed about the box constraints (5) to derive

(9c). For the heuristic presented in the next section, the values of the

slack variables sþ and s� from the subproblems (7) will also be shared

with the grid. They represent the difference between the profile

suggested by the Pload,coopi,t and a feasible power profile. Thus, this is

also an information exchange in the space of power profiles.

Malicious use of the information shared in this cooperation allows

only to derive a very accurate description of the projection of the fea-

sible set of the process model to the space of power profiles. How-

ever, any process regularly participating in any kind of price-based DR

would reveal such information as well. Also, we anticipate that

attempts to generate this projection in a detailed way would be

noticed by cooperating end-users because a huge number of itera-

tions would be required to even converge the BD for a single objec-

tive direction of the master problem. As we will describe, our

decoupling strategy terminates with close-to-optimal solutions after a

few hundred iterations, far before BD converges. Since malicious

exploration of the whole projection of the feasible set of the process

to the space of power profiles requires the convergence for many dif-

ferent master objective directions, the number of iterations required

for such intents will exceed the normal number of iterations by sev-

eral orders of magnitude.

4.4 | A heuristic for acceptably good solutions

In practice, we experienced numerical difficulties when the subprob-

lem objectives are approaching zero, that is, the power profiles

suggested by the master stage are nearly feasible. In particular, the

distance between cuts generated by the subproblems and the previ-

ous suggestion is below the feasibility tolerance, so the LP-solver of

the master stage fails to compute a new solution. To circumvent these

numerical issues, we propose to terminate the algorithm with a nearly

optimal solution at an acceptable optimality gap. As a beneficial side-

effect, such a termination also saves substantial computational effort

without compromising the economically favorable effects of the coop-

erative OPF solution, as we illustrate in Figure 6.

To compute an optimality gap, an upper bound and a lower bound

are needed for the cooperative OPF objective, which reflects the gen-

eration and transmission cost of the grid. Since the master problem

uses an outer approximation of the true feasible region of power pro-

files of cooperating plants, every solution of the master problem is a

valid lower bound for the cooperative OPF objective. Furthermore,

this bound is monotonically increasing as we add new cuts to refine

the outer approximation of feasible power profiles. An upper bound

for the cooperative OPF objective is given by the generation and

transmission cost when the power profiles of all cooperating pro-

cesses are fixed to any feasible profile. A feasible power profile is

computed in every subproblem iteration by construction of (7c) by

adding or subtracting necessary slack variables to the master sugges-

tion Pload,coopi,t . However, to obtain a sharp upper bound, it is necessary

to optimize the remaining grid decision variables, that is, the solution

of a conventional OPF is required, at a non-negligible computational

cost. During our preliminary studies, we found that the sum of all

Grid
problem (9)

Participating
entity i

problem (7)

Suggested
power profile
P load,coop
i,t

Participating
entity j

problem (7)
Suggested

power profile
P load,coop
j,t

New cuts of
the form (8)

F IGURE 2 At the start of the algorithm, box constraints for the
power profile variables of the cooperating plant, Pload,coopi,t are available
at the grid level. At every iteration, problem (9) is solved, resulting in a
new power profile for the plant, suggested by the grid. Because this
suggestion only reflects an outer approximation of the feasible region
of power profiles, the suggestion will likely be infeasible. Then, the

entity i generates a cut that by construction cuts off the previous
suggestion from the outer approximation of the feasible region of
power profiles in the grid model. Iteratively, the outer approximation
is refined, so when the grid eventually suggests a feasible power
profile to all entities, the algorithm terminates. The feasible power
profile belongs to a solution of the integrated problem formulation,
which is recovered without revealing process details to the grid
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subproblem objectives—which is available in each iteration without

additional effort—is almost proportional to the optimality gap. We

thus derive the following heuristic to efficiently terminate the

decoupled cooperative OPF problem with an acceptable optimality

gap: An upper bound for the cooperative OPF objective is only com-

puted when the sum of all subproblem objectives falls below a thresh-

old τ. If the obtained optimality gap ω is greater than the acceptable

optimality gap ωacc, we reduce the threshold τ by a factor of ω=ωacc.

This procedure avoids the need to solve many conventional OPF

problems, but still detects acceptable solutions reliably. Further imple-

mentation details can be inspected in our open-source code at http://

permalink.avt.rwth-aachen.de/?id=620241.

5 | CASE STUDY

With our case study, we seek to reproduce the results from the case

study in our previous work using the proposed decoupled formulation

of cooperative OPF.8 We use the modified IEEE 24 bus reliability test

grid proposed by Soroudi.11 Figure 3 visualizes this transmission grid;

it contains 12 generators and 17 load locations. Electrical batteries,

wind farms and generation and demand pattern for wind turbines and

connected loads are included as described in Reference 11.

In the subproblems, the electric load of the cooperating end-users

is modeled with linear state-space dynamic process models. Here, we

consider a chlor-alkali process. Its model of the form (2)–(6) reliably

predicts its behavior.8 The chlor-alkali process comprises numerous

electrolyzers running in parallel. Because the operational characteris-

tics of the process are independent of the number of electrolyzers,

the model can be arbitrarily scaled to different numbers of

electrolyzers and thus total process loads. If not specified otherwise,

we use a process with a nominal power draw of 71 MW, which

corresponds to 2.5% of the total load in the grid. Following Reference

8, we examine our algorithm on two cases of cooperating loads con-

centrated on a single bus and one case of cooperating load distributed

along the grid. We place the concentrated load on bus 7 in the first

case study and bus 5 in the second. The former is a bus with on-site

generation; the latter is a load-only bus. For the distributed load, we

choose buses 5, 7, and 8 in the third case study.

The master problem with one cooperating load has a size of

11,617 rows plus one row per iteratively added cut, 12,865 columns,

and 38,567 nonzero matrix entries. For each additional bus with

cooperating loads, 96 columns and 96 nonzero matrix entries are

F IGURE 3 Modified IEEE
24 bus reliability test grid.11 We
place concentrated cooperating
loads of 71 MW on bus 7 in the first
case study and on bus 5 in the
second case study, and distributed
cooperating load along buses 5, 7,
and 8 in the third case study. In our
congested grid model, we decrease

the total generation capacity of the
grid by 24%. We model this
circumstance as a complete failure
of the largest generator which is
located on bus 13 and by reducing
the generator capacity of the
second-largest generator, which is
located on bus 21, by 225 MW

0 50 100 150
1 .810

1 .812

1 .814

1 .816

1 .818

Iteration

O
bj
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tiv
e
(M

$)

Lower bound
Integrated solution

Upper bound

F IGURE 4 Convergence of the decoupled algorithm for 71 MW
cooperating load on bus 5 in a congested grid. The dashed black line is
the master problem objective, and the solid green line indicates the
objective value of the best feasible solution identified. Note that the
computation of the upper bound requires the solution of a non-
cooperative optimal power flow (OPF) problem. In this case study, the
first upper bound is computed in iteration 82, where the green line
starts. The objective value of the optimal integrated solution is shown
by the dotted red line
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added. Each subproblem has 14,018 rows, 14,209 columns, and

50,394 nonzero matrix entries.

We study all setups in both congested and noncongested grids.

We model congestion by removing the generator on bus

13 completely and reducing the generation capacity of the generator

on bus 21 by 225 MW. This corresponds to a decrease of 24% of the

total generation capacity originally available to the grid. Congestion

always occurs in the transmission line connecting bus 7 to bus 8 in all

case studies we carried out.

We implemented our algorithm in C++, using Gurobi 9.1.1 as the

linear program solver. Gurobi reads our models as*. lp-files and allows

direct access to the models to add cuts iteratively. Then, a warm start

can be used in the next iteration to solve the LPs again. We conduct

all calculations on a server with two Intel(R) Xeon(R) Gold 5117 CPUs

at 2.00 GHz and 320 GB RAM. We provide our maintained implemen-

tation of the algorithm as open-source code in the repository linked

above.

6 | RESULTS AND DISCUSSION

6.1 | Obtaining nearly optimal cooperative
solutions

The decoupling strategy achieves nearly the same cost reductions for

the grid and the cooperating consumers as the integrated solution

that relies on fully shared process models. Figure 4 shows the conver-

gence of the master problem objective function values, which is a

monotonic lower bound on the optimal integrated solution objective,

and the best feasible solution found, which is an upper bound on the

optimal integrated solution objective over the course of the iterations

for the congested case with a 71 MW cooperating load on bus 5.

Table 1 compares the cost savings computed with both strategies

for setups with the cooperating load concentrated on a single bus.

Table 2 shows those results for a setup in which the cooperating load is

distributed along the grid on buses 5, 7, and 8. For both strategies, we

report cost savings relative to nominal operation, where the power con-

sumption of the process is constant at all times. This is a reasonable

benchmark for the grid-level economics. For the electricity cost of the

process, we report the savings achieved by our cooperation scheme and

achievable by DR activities of the process. For the DR activities, we use

the electricity prices provided by the grid-level computations that

assumed nominal process operation. As visualized in Figure 1, we remark

that prices and corresponding DR power profiles are not guaranteed to

ever reach a consensus regarding the underlying assumptions. Both

Tables 1 and 2 show that the decoupled solution achieves nearly the

same cost savings as the integrated OPF. As we already reported in our

previous work,8 cooperation of the load located on bus 7 is less effective

than cooperation of other buses because the transmission line con-

necting buses 7 and 8 is congested in the congested setup. This effect

can again be seen in Table 1, where the cost reductions in a congested

grid are a lot higher when the cooperating load is placed on bus 5 instead

of bus 7. As explained in our previous work,8 the flexible cooperation of

2.5% of grid load reduces generation cost by significantly reducing the

generation prices, that is, shifting more generation duty to cheap genera-

tors if possible.

The decoupled solution also results in power profiles and price

profiles that closely follow their counterparts from the integrated
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F IGURE 6 The acceptable gap can be
loosened or tightened to balance the
number of iterations and the closeness of
the obtained solution to the integrated
solution. The realized cost savings
converge toward 100% of the achievable
savings with tightening tolerances as
shown on the left. Simultaneously, tighter
tolerances require more iterations as
shown on the right. These two trends
motivated a default optimality gap choice
of 0.01%
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F IGURE 5 Power profiles and price profiles
obtained from the decoupling strategy and
model-sharing integrated optimization take a
similar course. We place a cooperating end-user
with the nominal power draw of 71 MW on bus
5. The left plot shows the results for normal
grid conditions, the right plot shows results in a
congested grid
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model. We visualize this in Figure 5 for the setup with flexible load

concentrated on bus 5, as an example. The close match between pro-

files computed from the decoupling strategy and integrated optimiza-

tion is also present for the other setups we investigated, but we omit

their visualizations in the interest of brevity. We note that price pro-

files and power profiles differ only because the iterative procedure

stops with an acceptable optimality gap. In theory, iterating until con-

vergence leads to concordant solutions—assuming a unique optimal

solution, that is, no degeneracy.

6.2 | Trade-off between acceptable optimality gap
and computational effort

The optimality gap ω that the user considers acceptable influences

the computational effort necessary to compute an acceptable solu-

tion and how close such a solution is to the integrated solution.

The decoupling strategy realizes a lot of the cost savings that coop-

erative formulation can achieve, even with relatively loose accept-

able gaps, as illustrated in Figure 6. Even with the loosest

acceptable optimality gap of 0.2%, our decoupling strategy accom-

plishes over 75% of the achievable cost savings relative to nominal

operation in all setups. Reducing the acceptable threshold to

0.01%, over 98.5% of the achievable cost savings were obtained in

all instances considered.

Figure 6 shows the number of iterations required until an accept-

able solution is found. A loose optimality gap requires only few

iterations, and our default acceptable optimality gap of 0.01% requires

a few hundred iterations; for even tighter optimality gaps, the itera-

tions required increase further, while the marginal economic benefit

diminishes.

The computational runtime, as visualized in Figure 7, confirms

the trend toward increasing computational effort for very tight opti-

mality gaps. The computations were not performed on an otherwise

idle machine, so the exact numbers might not be reproducible, but

the overall trend is clear. The relative share of the computational

time spent in the subproblem stage decreases as the number of

cooperating end-users increases. This is because the size of the sub-

problems is fixed and they are solved in parallel. In contrast, the mas-

ter problem is hard to parallelize, and it contains more variables and

cuts as the number of cooperating end-users increases. Figure 7 also

confirms that the adaptive threshold selection for the feasible point

assessment works well in practice. This stage requires by far the

least computational time. Considering the alternative of having to

iterate until convergence to the integrated solution, this computa-

tional effort is well allocated.

6.3 | Computational effort for multiple buses with
flexible load

In Figure 7, we already saw an important limitation of the proposed

decoupled problem formulation: The computational effort for finding

an acceptable solution for the decoupled problem increases

TABLE 1 Cooperative cost reductions with flexible load on a single bus for integrated and decoupled optimization

Cooperative load location,
scenario

OPF cost reduction vs. nominal
operation

Process energy cost
reduction by DR to grid prices

Process energy cost reduction vs. nominal
operation

Integrated Decoupled Integrated Decoupled

Bus 5, normal 0.514% 0.508% 13.5% 12.5% 12.4%

Bus 7, normal 0.514% 0.507% 13.5% 12.5% 12.3%

Bus 5, congested 15.2% 15.2% 21.5% 48.7% 48.6%

Bus 7, congested 0.679% 0.672% 15.3% 12.8% 13.5%

TABLE 2 Cooperative cost reductions with distributed flexible load for integrated and decoupled optimization

Scenario

OPF cost reduction vs. nominal
operation

Location of coop. load
Process energy cost
reduction by DR to grid prices

Process energy cost reduction vs.
nominal operation

Integrated Decoupled Integrated Decoupled

Normal 0.514% 0.508% Bus 5 13.5% 12.5% 12.4%

Bus 7 13.5% 12.5% 12.4%

Bus 8 13.5% 12.5% 12.2%

Congested 14.8% 14.8% Bus 5 21.6% 46.6% 46.5%

Bus 7 15.3% 12.7% 12.5%

Bus 8 21.6% 46.6% 46.3%
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dramatically when the number of buses with cooperating load

increases. To study this effect further, we present two scenarios in

which we increase the number of buses with cooperating end-users.

For scenario A, we start with bus 5 and add buses 10, 9, and 19 in that

order. Similarly, we define scenario B to start with bus 7, successively

completed by buses 6, 10, and 16. On each bus, we model the cooper-

ative load to be 50% of the total bus load of that bus. We always use

our model for the chlor-alkali process as the subproblem and run the

computations in normal and congested grid setups. Our results are

visualized in Figure 8.

The computational effort for solving these problems varies with

the case definition, that is, the selection of buses with cooperating

end-users and whether or not the grid is in a congested state. When

more buses have a cooperating load, the master problem becomes

larger as it needs to represent the power profiles of more processes

with variables, box constraints, and iteratively generated cutting

planes. We remark that the computational effort scaling corresponds

only to the number of buses with cooperating load, not the amount of

flexible cooperating load in the grid. Therefore, the general trend of

increasing computational effort with an increasing number of buses

with cooperating end-users is intuitive. However, the significant

increase shown in Figure 8 is surprising and calls for further research

attention. Besides more sophisticated algorithmic developments, a

practical compromise to solve large problems with many cooperating

end-users could be to loosen the acceptable relative optimality gap or

terminate after a fixed number of iterations with the best found

solution.

7 | CONCLUSIONS AND FUTURE WORK

We solve cooperative optimal power flow (OPF) problems by sharing

limited information between the grid operator and participating loads

by using a Benders decomposition (BD)-inspired communication

scheme between the master and subproblem stages. Our decoupling

method achieves significant fractions of the attainable cost savings of

the cooperative formulation of the OPF problem in an acceptable

number of iterations and computational time. By adjusting the accept-

able optimality gap, it is possible to trade accuracy for computational

effort and vice versa.

F IGURE 7 Visualization of runtimes of problem stages until convergence to an acceptable gap. Tighter acceptable gaps require longer
runtime, and the actual runtimes are problem-dependent. The left figure shows cases with 71 MW cooperating load concentrated on one bus for
each acceptable gap. From left to right, the load is placed on: bus 5 in normal grid, bus 5 in congested grid, bus 7 in normal grid, and bus 7 in
congested grid. The right figure shows results for cases with 71 MW cooperating load distributed on buses 5, 7, and 8. For each acceptable gap,
the left/right bars show results of the normal grid/congested grid setup. The master stage and the subproblem stage require the majority of
computation time, with the relative share of the master stage increasing with more buses with cooperating load as multiple subproblems run in
parallel. Assessing the optimality gap of a feasible solution to terminate the algorithm has negligible computational effort with our heuristic
stopping criterion

F IGURE 8 Scaling behavior of the decoupled problem regarding
multiple cooperating end-users: We show four cases for each number
of buses with cooperating loads. From left to right, these are: A in
normal grid, B in normal grid, A in congested grid, and B in congested
grid. The computation time is quickly increasing with increasing
cooperative bus count. On the one hand, the increase is driven by the

master problem stage, which becomes more complex when more
processes need to be represented and increases its relative share of
the total runtime. Furthermore, the master problem stage is hard to
parallelize. On the other hand, finding the optimal solution with
multiple buses with cooperating loads requires more iterations, which
increases the total computational effort. Once again, the
computational effort for assessing if feasible solutions are acceptable
is negligible
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Future research should consider improvements in the scaling

behavior of the method regarding the number of buses with

cooperating end-users. Also, the approach extends to more compli-

cated models, for example, mixed-integer master problems. With a

generalized BD,49,50 more general process models can be used to rep-

resent processes (participating loads) that cannot be described accu-

rately with linear models.
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